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Précis   
Modern spares optimization theory dates to the development and testing of the Base Spares Model 
(BSM) 1. The test, carried out at George AFB during 1965-66, demonstrated that system-based spares 
computations could cut inventory in half compared to single-item methods. The first implementation, 
METRIC, was published by RAND in 19662. Virtually all serious spares optimization models currently 
in use owe their theoretical structure to Sherbrooke's efforts, amplified later by VAR-METRIC.    
Virtually all METRIC class models use the assumptions of long term and steady state. These 
assumptions make the mathematics tractable, but have the drawback, never seen as a problem until 
recently, of ignoring the crucial role of time. Problems such as fleet build-up/run-down, allocation of 
budgets between long and short lead time items, part obsolescence and foreseeable changes in 
operating Tempo, goals, basing and fleet size/composition are all ill served by steady state models. A 
multi-period optimization model solves a number of these problems by allowing the analyst to explicitly 
account for such changes.   
One of the more interesting consequences of shifting focus to multi-period modeling is that the first 
period solution will invariably be more expensive, whereas the discounted present value of the entire 
series of solutions is far less costly. The conclusion is that multi-period optimization minimizes 
inventory life cycle cost, rather than a single solution for the never-realized steady state.    
A Brief History of Spares Computation   
The origins of spares analysis are obscure, but are undoubtedly tied to the rise of operational analysis 
during World War II. Ideas appear to have evolved in parallel lines since around the mid-1960s when 
Sherbrooke's work at RAND began the sequence of improvements in system optimization that led to 
what is now generally accepted as true system inventory optimization. Oddly, at the same time, most 
professional logisticians around the world were using and attempting to improve far more   
(mathematically) simple formulations based on single-item modeling. Blanchard, in his 1998 book3, 
helped to popularize the "constant k" version of single item spares modeling, based on the demands 
during lead time (λt) associated with each part. A number of other models have evolved during the 
same period, based on early work on EOQ or economic order quantity and saw-tooth models to 
determine re-order point and order quantity. In general, these models are related to the demand for 
spare parts used in manufacturing processes, which have also given rise to the "just in time" concept.   

 
1 Feeney, G. J. and Sherbrooke, Craig C., "A System Approach to Base Stockage of Recoverable Items," RM-4720, RAND 
Corporation, Santa Monica, 1965.   
2 Sherbrooke, Craig C., "METRIC: A Multi-Echelon Technique for Recoverable Item Control,” RM-5078-PR, RAND 
Corporation, Santa Monica, 1966.   
3 Blanchard, Benjamin, Logistic Engineering and Management, Prentice Hall, 1998, Upper Saddle River, NJ   

http://www.rand.org/pubs/authors/f/feeney_g_j.html
http://www.rand.org/pubs/authors/s/sherbrooke_craig_c.html
http://www.rand.org/pubs/authors/s/sherbrooke_craig_c.html
http://www.rand.org/pubs/authors/s/sherbrooke_craig_c.html
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In this paper we are concerned with the computation of spare part inventory solutions required to 
support the on-going operation of maintainable equipment. We specifically exclude any concern for 
methods appropriate to the manufacturing process.4    

  
The basic structure of the constant k model is  𝑆 = ⌈𝜆𝑡+𝑘√𝜆𝑡⌉, where S, the number of spares, is set 
equal to the (rounded up) number of demands during lead time plus k times the square root of that 
value. This formulation is based on the notion that the Poisson distribution, thought to accurately 
characterize the arrival of demands at a stockpile from a random process, is analogous to the Normal 
distribution. Since in a Poisson distribution the mean and variance are equal (𝜇 = 𝜎2) the square root 
of λt is the standard deviation of the demands during lead time distribution. The greater the value of k, 
the larger the buffer stock set aside against variability in both the demand rate and the lead time. The 
problem with this formulation is that it considers each part in isolation – it is a "single item model." 
Because each part is considered in isolation, models of this sort ignore the relative value of one part 
over another, even when their λt values are equal.  To see why this is an error, imagine two such parts, 
one of which can be purchased for $1 and the other for $10,000. Since both parts will have an equal 
impact on expected backorders (EBO), the cost effectiveness of buying the $1 part is 10,000 that of 
buying the other one. This cost effectiveness measure is familiarly known as the "bang for buck" ratio 
and we will use that notation later in this paper.   
The system optimization models (as opposed to single-item or constant k models) evolved slowly over 
the period between 1966 and about 1990. During that period, the models first began to look at 
hardware indenture levels below the line replaceable unit or LRU5 and attention among users of the 
models shifted from an objective function of fill rate (probability of being able to fill an order at the 
base) to operational availability.    
In 1996, Sherbrooke published his seminal paper introducing VARI-METRIC6. This work finally solved 
the problems associated with variability in both demand rate and delay time and came into widespread 
use around the world.7 Later, about 1998, Sherbrooke, in unpublished work, collaborated with the 
author to develop the n-echelon (real locations) capability of VMetric®8.   

In the US, because of the large size of deployed fleets and profusion of bases, models abstracted the 
complex of airbases and shops as echelons of maintenance, making the implicit assumption that all 
bases were the same (same number of aircraft, same operating pace, same delay times between 
them and intermediate sites and so on), while in Europe (particularly in Sweden) the more modest size 

 
4 An allied problem might be termed the "service center" problem, which entails calculation of spare parts quantities when the 
supplier has no direct insight into the operation of the several system fleets whose operations generate the demands he 
sees. This kind of problem is becoming increasingly interesting in the commercial airline sector, where service center  
5 Line refers to the flight line, as these models were first developed for aircraft inventory problems. The significance of the 
term in modeling must not be misunderstood. An LRU is not defined by any criterion of weight or size or even convenience of 
removal, although all these attributes are important in the maintainability design of hardware systems. An LRU is simply any 
part which, by being removed and replaced at the site of equipment operation, can restore a broken system to operation. 
Because that is the case, an LRU has a direct impact on system availability. An SRU – a shop replaceable unit – does not 
have the same immediate effect on availability, but only on the cost and delay involved in making a failed LRU available to 
perform its crucial role again. US Naval usage substitutes the terms WRA and SRA for LRU and SRU, meaning weapon 
removable assembly and shop removable assembly respectively.    
6 Sherbrooke, C. C., "VARI-METRIC: Improved Approximations for Multi-Indenture, Multi-Echelon Availability Models," 
Operations Research 34, 311-319.   
7 First fielded commercially by TFD Group ( now TFD Global) as VMetric, the theory is also applied in the US Army model, 
SESAME, the US Navy model ACIM, the US Air Force Models Dyna-METRIC and ASM, NASA models and the Systecon 
model, OPUS®. Indeed, it is unlikely that any serious spares optimization tool would ignore Sherbrooke's innovation.   
8 VMetric is a registered trademark of TFD Global.   



 

 

of the military establishment made it more significant – and more feasible – to treat each real 
operating or support location as a distinct entity. As micro-computer capabilities increased, it became 
increasingly feasible to handle the "different base case9."   

  
contracts are being negotiated between multiple customers flying similar aircraft, each of whom seeks different levels of 
protection for different ranges of parts from the service center provider. We mention it here because, like spares calculations 
to support manufacturing, this paper does not deal with the service center problem.   
Understanding Marginal Optimization   
There is a great deal of mathematics and statistics involved in the formulation of optimal spares 
models and the proof of their correctness. A lucid and complete account can be found in  
Sherbrooke's 1992 book, Optimal Inventory Modeling of Systems10. Here we will restrict ourselves to 
the simple matter of how marginal 
optimization works and how the 
traditional, time-insensitive, model must 
be altered.    

A marginal optimization technique works 
by continuously asking, what is the next 
best part/location choice, where 'best' 
means that choice exhibits the highest 
absolute ratio of decrease in expected 
back orders (EBO) to the price or cost of 
buying the part   

and putting it at that location. In the illustration in Figure 1, a system is made up of only six parts and a  
single location must be stocked. Starting with no stock at all, a calculation is made for each part to 
determine how big a drop in EBO would be created, ∆EBO, if one of that part were stocked. That 
decrease is divided by the item price of that part, IPi

11. Marginal optimization proceeds by choosing the 
largest (negative) ratio.    
Once chosen, the ratio must be computed for that part again, since the second part of that type can be 
expected to have a smaller effect on EBO than the first did. Having recomputed the ratio for that part, 
all the ratios are looked at again and the part with the biggest ratio is selected. This process continues 
until there is either no discernable further effect on EBO (the computation has reached the upper 
asymptote) or until a specific  goal, such as fill rate or Ao is reached. It goes without saying that 
multiple indentures of hardware and multiple repair, operating and storage sites or echelons of 
maintenance complicate the computational process tremendously. Nevertheless, modern 

 
9 Notwithstanding these abilities, the US Navy continued to focus on two echelons and did not even use a multiechelon 
model in their actual provisioning efforts – CARES and ARROWs are used by NAVICP to model wholesale and retail stock 
separately. The same agency also fields ACIM, a multi-echelon model, used in combination with TIGER, a simulation model 
whose purpose is to adjust utilization and criticality rates for multi-mission system components based on their usage in 
various mission. It should also be noted that both SESAME, the US Army spares model and ACIM are VARI-METRIC  
10 Sherbrooke, C. C., Optimal Inventory Modeling of Systems, 1992, John Wiley and Sons, New York.   
11 The illustration is a simplification, of course. For example, it note that the cost of a spare part, located at a given facility, is 
very often more than just the item price of the part as shown here. The extreme case is that of orbital replacement units used 
by NASA at the International Space Station. The cost of "up mass," that is, lifting the part into orbit, as well as a storage 
space scarcity penalty, must be accounted for in addition to the part's purchase price.   

Figure    1   :      A Sim ple System's Bang for Buck Ratios       
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microcomputer equipment and speedy algorithms make it possible to carry out computations of 
staggering size within reasonable time limits12. 

implementations similar to an earlier version of VMetric. The service models, however, remain simple multi-echelon models, 
unable to cope with realistic deployment scenarios.    

The result of such a calculation is a 
curve, shown in Figure 2, in the shape 
of a traditional economic production 
function, that shows how spares 
availability rises with most efficient 
investments in inventory13. All points 
above the yellow line are infeasible – 
there is no way to get greater 
availability at any expenditure than 
shown by the dot at that investment. 
Moreover, all points below the yellow 
line are inferior. As a result, we refer 
to the yellow line, the trace of 
marginal calculations made as shown 
above, as the locus of optimal 
solutions. The ability to trace these 
optima is of real importance in 
practical inventory decision making. 
Among these reasons, the most 
important one seems to be the ability 

to navigate along the optimal locus backward from a desirable, but unaffordable solution. Each 
backward step can be interpreted as eliminating the least cost effective spare part in the total solution 
to that point.   

Time-Based Inventory Optimization   
We come now to time and the role it plays in both the practical and theoretical aspects of inventory 
optimization. The spares planner is regularly confronted with problems involving time. Some of the 
problems are recognized and dealt with others either go unrecognized or simply ignored because their 
solution is too difficult. The main spares optimization problems we associate with time include:   

• Fleet build-up or multi-period initial provisioning   

 
12 In a study of alternative spares technologies run for the US Navy by the Logistic Management Institute in 2002-3 (Navy 
contract number N00014-02-F-Q999) the problem included 4 system types (variants of the F-18 fighter), 10 aircraft carriers, 
one naval air stations and the depot. The total parts count required to model all four systems exceeded 10,000.  
Nevertheless, this problem was finally run by VMetric in about 30 minutes.     
13 Note that operational availability is the product of maintenance and spares availability: 𝐴𝑜 = 𝐴𝑚 ∙ 𝐴𝑠 .   

Figure    2   :     A   o       versus Inventory Cost       



 

 

• Fleet run-down and end-of-life problems   

• In-Service inventory problems o Long lead time items  o Obsolescence   
In the process of developing a solution to problems associated with time, we determined that the 
mechanism adopted would also serve to confront a further problem, namely, how to deal with complex 
spares objective functions. In general, optimization routines have been based on reducing expected 
backorders and translating the achieved levels of EBO into operational availability or whatever other 
measure of effectiveness (MOE) was of interest. When more than one MOE must be satisfied, 
however, this procedure is deeply flawed. Before exploring the simple changes in theory required to 
account for time, we first want to understand the drawbacks of spares optimization in its current 
bestpractice form.   
Drawbacks of Steady State Models   
Models like VMetric and OPUS have saved a lot of spares investment money through the years, and 
led to significant increases in achieved operational availability for fleets of many types of systems. 
They have also left some problems in their wake, related to their fundamental structure and approach. 
Technically, these models are known as long-term, steady-state models. To understand their 
limitations, it is necessary to understand what these technical terms mean.   

  
First, "long-term" means forever – an 
infinite time horizon. The  
significance of this view of time is that 
the real world has forever for the 
model's answers to be proved  
correct. In practical terms, it means that  
if availability falls short of the goal for 
a few time periods, the shortfall is 
compensated for by availability 
running above target for a while. In 
Figure 3, it is easy to see why this 
creates a   
problem. To deliver less than the target value of Ao or some other MOE usually leads to a penalty or 
lost incentive fee (red areas). Moreover, it is usually true that little or no value is attached to over-
delivery of Ao or another MOE. When using a long-term steady-state spares model, analysts can only 
solve this problem by setting a confidence level for achievement of the MOE target value. Doing so 
decreases the red areas to an acceptable level, but increases the green areas (uncompensated over-
achievement) correspondingly. The ideal solution, of course, would be one in which the returns to 
achieving the target MOE more frequently were balanced against the cost of achieving them.   
The next thing to consider is the idea behind the term steady-state. We use models to predict the 
future. For some few things (operating pace, deployment and others) we know something about the 
future because those things are subject to what might be called reliable planning. For most of the 
inputs to a spares optimization model, however, all we know is what we have observed up to the 
moment that we run the model. The hardware breakdown structure, together with the attributes of all 
the parts that make it up, the behavior and capabilities of the repair and transportation system such as 
repair rates, repair times, delays in retrograde and forward shipping, procurement lead times for each 
part, condemnation rates, retest OK rates and so on, are all nothing more than projections from (often 
imperfect) data describing the past. Nevertheless, the model has no option but to assume everything it 

Figure    3   :     A   o       Performance Over Time       
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is told is true. Worse, it must also assume that all those things will remain true over the long term, 
which, as we just noted, means forever.    
Neither the long-term, nor the steady-state assumptions are crippling insofar as they enable us to get 
a better answer than we would if we abandoned system-based analysis as a means of solving the 
decision problem.14 Nevertheless, the drawbacks of these assumptions are clear, as is the likelihood 
that improvement is possible. The steady-state assumption seems especially crude when we know 
with certainty that many things will change. When, in fact, we plan to change things and would like to 
see the accurate implications of those changes.   
Fleet Build-Up   
The simplest case in point is multi-period delivery of new systems. Current models produce a single 
set of answers (stock mix, level and distribution) that is assumed to represent the definitive inventory 
"strategy" for the balance of the life of the system. But, what happens when a fleet is built up a few  

  
systems at a time, as would happen with new aircraft delivery? The analyst would be constrained to 
pick some point in the process such as after the first delivery, say, or when the entire fleet is 
assembled, and run the model reflecting the circumstances anticipated at that time. Neither of these 
runs would be quite satisfactory, however. In the first case, there are no answers for what stocks are 
required after the first period and in the second, there are no answers for what stocks should be 
planned for the build-up period. The solution adopted by VMetric users has been to run the model for 
the first delivery and load the answers into the next period's run as initial stock. This process is time 
consuming and fails to take cognizance of the economics of time.   

Fleet Run-Down   
The matching problem to fleet build-up is the run-down of the fleet being replaced. There are many 
stock decisions required to manage run-down in a sensible way. As systems are withdrawn from 
service, some stocks become redundant. Nevertheless, there will still be shortages that, if not filled, 
will cause the fleet MOEs to drop below acceptable levels. When systems are taken out of service, 
they are often sold to other users, who also want to procure stocks of spare parts with their (new to 
them) systems. Selecting which parts to release and making decisions about buying new parts whose 
normal longevity exceeds their useful life in this system are both problems whose solutions are at 
least partially dependent upon cognizance of time.   

In-Service Inventory Problems   
Every inventory manager finds himself wrestling with the trade-off between long lead time items and 
short lead time items. The latter are clearly more valuable in the sense that they lead to an increase in 
benefit-dependent MOEs right away, while long lead items will only have their effect later.  
Complicating this difference is the fact that, to correctly measure the difference in value, the impact of 
the long lead item must be discounted to present value. If discounting is not done, the long lead item 
will be overvalued. While making the discounting calculation is simple, no computation made outside a 
model run is both simple and capable of preserving optimality of the sequence of choices.   

 
14 Ample proof of this was given by the initial test of the most primitive form of Sherbrooke's model called the Base   
Spares Model, tested at George AFB in Fall 1965 and Spring 1966. In this exercise, the not operationally ready due to stock 
(NORS) rates of aircraft stationed at George AFB were measured before and after change-out of stock from what was 
available in the first three months to what BSM recommended for the next three months. The study found no statistically 
significant difference in NORS rates even though the BSM-computed inventory cost half what the original inventory cost. 
Interestingly, in every spares study conducted at TFD Global over the past 25 years, this ratio of about twice the investment 
required to achieve a given MOE has been repeated, at least with aircraft. The ratio is far worse with ships, ground 
equipment, buses, trains and the like.    



 

 

A more significant problem than the long lead time problem is the phenomenon of obsolescence. More 
accurately, the problem arises because of differential rates of obsolescence among the components of 
a system, a problem that has only come to the forefront with the increasing use of off-the-shelf, 
commercial components. Usually, the system under study (especially, defense systems) is made in 
such small numbers that the demand it represents for components is insignificant to the manufacturer. 
As a consequence, components go out of production quickly, replaced by better, cheaper or merely 
different ones. This, in turn, drives a continuous process of hardware update, usually called 
technology insertion, that serves to cause stocks of electronics components in particular to become 
obsolete on a cycle of three to five years.   
The problem this phenomenon causes for spares optimization is readily understood by an example. 
Imagine that there are two components which are identical insofar as their crucial attributes are 
concerned: demand rates, delay times, repair rates and so on are all the same. However, one of the 
parts is electronic and the other mechanical. All current spares optimization models will buy the same 
number of each of these parts even though this is obviously the wrong choice. The electronic 
component will be replaced by something with a different part number within a relatively short period 
of time, making its stocks redundant15. On the other hand, the mechanical assembly (usually designed 
expressly for this system) will be useful for the remainder of the system's life16.   

  
The Mechanics of Spares Optimization With Time   
Adapting spares optimization processes to recognize and deal with time is not very complicated, at 
least in theory, if not in practice. The basic issue is to modify the ratio of change in expected 
backorders (∆EBO) to the unit price of the item that caused that change. We shall call this the 
costeffectiveness ratio or CE in the following discussion17.  In current practice, we define the ratio as 
CE	=	∆EBO 
	 .  
IPi 

Recognition of time, however, leads us to understand that the change procured for EBO will only begin 
at some point in the future (lead time) and only persist for some period (the time before obsolescence 
or the end of the system's life). Hence, the cost effectiveness ratio defined in the context of time can  

be CE𝑡	=	∆ EBOIPi𝑡1…𝑡2  

Time-based value calculations must always include discounting to ensure that delayed benefits are 
valued appropriately (less) compared to current or nearer-in-time benefits. We identify, for any 
decision-making entity, its appropriate discount rate18, d, and calculate the present value of a benefit X 

 
15 There are two possibilities. Either the old part number is no longer useful on this system or it is an inferior substitute for the 
new one. In some cases, an inferior substitute can also be modified to become the new part number. If no longer of value on 
the current system, it may have a diminished value on the open market.  
16 Note the difference between useful life (which measures time to obsolescence) and expected life (which measures time to 
wear-out). The useful life of a car tire, for example, may be coincident with the life of the car. Its expected life, however may 
be limited to 40,000 miles. To avoid these name confusions, at TFD we have coined the phrase Mean Technological Life or 
MTL to describe a part's useful life.    
17 In practice, this ratio is often referred to as the "bang-for-buck" ratio, a less elegant, though more familiar term.  
18 There is considerable confusion and misunderstanding among engineers and logisticians (and one assumes, many other 
groups) about the correct definition of the discount rate. It is most often confused with a conventional interest rate, especially 
in textbooks addressing the topic of engineering economy. The discount rate used by economists plays a very different role 
than a market rate of interest. Instead of portraying the marketclearing price of money, the appropriate discount rate for each 
decision maker determines whether he will be a borrower or a lender. In the language of Fisher (The Theory of Interest, New 
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delivered t periods in the future as P𝑉0(𝑋𝑡)	=	( 1+𝑋𝑡𝑑)𝑡. This procedure must be applied to the 
sequence of EBO changes occurring between t1 and t2, engendered by the investment of IPi. By doing 
so, we are able to calculate the present value of the stream of benefits, the present value of which for 
each period is given 𝑃𝑉0	(∆EB𝑂𝑡)	=	( ∆1EB+𝑑𝑂)𝑡𝑡	and the present value of the sum of changes is 
given by the following.  

𝑡=𝑡2 

𝑃𝑉0(∆EB𝑂𝑡1…𝑡2)	=	∑	𝑃𝑉0	(∆EB𝑂𝑡)  
𝑡=𝑡1 

Finally, the time-sensitive cost Effectiveness ratio is defined as 𝐶𝐸𝑡	=	𝑃𝑉0(∆EB𝐼𝑃𝑂𝑖	𝑡1…𝑡2)  

Complex Combinations of Measures of Effectiveness   
While the calculation of CEt can be carried out by applying the discount factor to the probability 
measure EBO, it can also be used with an estimate of the monetary value of changes in EBO. Mindful 
that the purchase of a spare part represents an investment whose return is measured by the impact of 
EBO changes on a variety of measures, the value of ∆EBO in each period can be calculated as the 
linear sum of those monetary changes. For any period, the monetized value of a change in EBO can 
be portrayed as:   

𝑛 

𝑃𝑉0(∆EB𝑂𝑡)	 EB𝑂𝑡)]  
𝐼=1 

Any change in expected backorders will have differential impacts on operational availability, fill rate, 
average delay time, time to fill, dispatch reliability, and many other measures. Each MOE or key 
performance indicator (KPI) can be calculated as a transform of EBO, which is represented in the  

  
  
equation as the functions, 𝑔𝑖. The contractual stipulations by which rewards or penalties are computed 
on the basis of satisfying these requirements or failing to do so are represented by the functions 𝑓𝑖.  In 
the situation in which the owner of the system also provides his own supply support, rather than 
contractual rewards associated with the MOEs, we would expect to find a set of managerial targets, 
appropriately weighted for the relative importance attributed to them by executive management.   
It should be noted that, although the ability to optimize spares calculations according to the logical 
requirements of complex incentive schemes is not a function of time, it is an important step forward in 
the calculation of optimal inventory. Further, because the time context is present, the monetization of 
EBO provides a straight forward business case analysis for every marginal stock choice. Hence, the 
resulting marginal optimization curve can now be described as representing the locus of maximum 
return of investment decisions, rather than simply the locus of lowest EBO per investment quantum.   
The Impact of Accounting for Time   
The preceding might be dismissed as nothing more than an interesting argument if, in practice, the 
changes in computation outlined did not produce significant differences in stock choices. To test the 

 
York, 1930), the discount rate measures an individual actor's "rate of impatience" to consume. The more impatient to 
consume, the higher a return he would demand to delay consumption.   



 

 

importance of these changes, an engine was built to make time-based calculations, and these were 
compared with a conventional VARI-METRIC based model.19 Long lead time items versus short lead 
time items were compared by simply using the data present in the calculation. Obsolescence was 
studied by attributing time to obsolescence or mean technological life (MTL) to technology classes of 
components such as electronic, hydraulic, pneumatic and other mechanical. The most interesting 
comparisons involve the introduction of obsolescence and its impact on the total cost of spares.   
A series of comparative runs – more than 5500 altogether – were made in both VMetric and TEMPO 
to investigate the impact of a variety of variables, on spares cost when obsolescence is considered. 
The form of obsolescence that cause the most concern is market-driven technological obsolescence. 
In this form, components are often taken out of production after a relatively short life; from three to five 
years in most cases. Considering the change in the "bang for buck" ratio or CE in the discussion 
above, we varied several key inputs to see what their effect would be. The values over which each 
variable was used are shown in Table 1.  
  

    
Table 1 Sensitivity Variables and Ranges  

  
The general approach of the comparative analysis was to produce the first period run in TEMPO with 
exactly the same data used to run VMetric. Any differences in the results are explained by data 
elements taken account of by TEMPO and not by VMetric. These include assumptions about the 
proportion of parts subject to technological obsolescence (MTL < system life), the length of 
remaining MTL, the discount rate and the length of the system's remaining life. All differences in the 
sequence of part selection appear to be sub-optimal according to the assumptions of the steady-
state model.  
The reason for this is illustrated in Figure 4. In the figure, the TEMPO computation shifts off the blue 
locus of optimal solutions when the first part subject to obsolescence is encountered. This is the point 
at which the change in the calculated value of  
CE is less in TEMPO than in VMetric  

 
19 The comparison was based on spares estimates for a fictitious aircraft system constructed of 1,500 components compiled 
from a number of aircraft. The control calculation utilized VMetric® 4.0 and the time-based calculations were made with a 
prototype of the new TEMPO™ calculating engine.   
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Figure 5: TEMPO vs   VMetric 2nd Period Difference       

Figure 4: Shifting from Optimal Locus in Tempo because 
of a shorter useful life. 

The question, then, is how is an apparently 
sub-optimal answer correct? The answer 
lies in the difference of perspective from the 
unrealistic steady-state, infinite time horizon 
view to the explicit treatment of time in a 
multi-period model. To capture the cost of 
the supposedly optimal choice that TEMPO 
rejected, one must look forward to the 
moment in time, two or three years hence, 
when the full stock of that part must be 
discarded and replaced by another part 
number of approximately equal cost due to 
obsolescence. That is the situation with the 
steady-state solution. The TEMPO solution, 
however, anticipated that problem and 
skipped over that part to find the next best 
choice, using its different definition of best. 
These effects are illustrated in Figure 5. The 
comparative analysis was conducted by  

spinning out the implications of these differences over the life of the system – and discounting the 
consequences to present value.   
In the illustrations that follow, the differences between costs of VMetric-generated solutions and 
TEMPO solutions are the "life cycle cost" differences generated by the need to discard stocks of 
obsolete parts in VMetric solutions, which is not done in the TEMPO solutions. It should be noted that 
none of these differences are due to foreseeable changes in basing, fleet size, reliability growth 
operating program and other factors that planners may know and wish to plan for. Such changes 
would also cause often profound changes in the TEMPO solution set compared to the optimal set 
generated by VMetric or other steady state optimizing models.   



 

 

Taking these factors into account – both predictable changes in technical obsolescence and 
foreseeable, but not predictable changes in operating Tempo, basing, fleet size and maintenance 
capacity, the difference between TEMPO and VMetric answers amount to a difference between 
minimizing the life cost of inventory versus optimizing the inventory required for a (fictitious) steady 
state. An important question is to determine how significant these differences are. If they are trivial, 
then it wouldn't matter which approach one used. The comparative sensitivity analysis we conducted 
to test the differences indicates that mean technological life (obsolescence in any form) is the most 
significant factor. It's importance is modified depending on the remaining life of a system, and the 
discount rate. The normally predictable changes in a program that describe fleet size, basing, 
operations and support environment will also have very significant impacts in most cases. An example 
of a factor that does not have as big an impact as one might think is that of long-lead time purchasing 
decisions. Basically, the only difference between a TEMPO and a VMetric answer in this regard is that 
VMetric would tend to spend too much on long-lead time items because it can't sense the decrease in 
return on investment accounted for by discounting to present value.    
A large number of comparisons can be made from the 5500 runs of the study. Only a few are 
illustrated here to give the reader some idea of the savings available from shifting to a multi-period 
perspective.    

In the first illustration 
shown in Figure 6, each 
graph indicates that the 
relative savings  
(measured as % increase 
of VMetric solution over 
TEMPO solution) 
increases as program life 
increases. These relative 
increases arise from the 
fact that the longer the 
life of the system, the 
more times part stocks 
would be thrown out that 
had been surpassed by 
new designs. This effect 
recurs with most of the 
comparisons we looked 
at, although driven for 
different reasons.   

There could easily be a 
question of how  
significant the discount rate is itself. This is especially true at the time of writing, when interest rates 
are forced to historic lows as part of the economic recovery strategy being followed by central banks 
all over the world. The graphs in Figure 7 indicate that this expectation is false. Moreover, that 
discount rates interact with mean technological life (MTL) in such a way as to complicate the matter 
quite a bit.    

Figure 6  Program Life Versus MTL   



TFD White Paper  

© TFD Group 2015-18 - All Rights Reserved World Wide  
12  

  

The problem amounts to this: 
discounting to present value 
expresses a lower value of both 
costs and returns to investment. In 
terms of the TEMPO problem, long 
lead time items are less important 
than they are in VMetric because 
the value of the performance they 
enhance is delayed. Hence, the 
higher the discount rate, the bigger 
the difference there would be 
between a V Metric and a TEMPO 
solution. Alternatively, the more 
replacement cycles there are 
(either due to shorter MTL or 
longer program life) the less their 
present cost due to increasingly 
important discounting. These two 

effects counter each other and are, themselves subject to complex reactions. For example, discount 
rates will have a bigger effect on longer program life than on short program life, no matter the average 
length of MTL. The shortest MTL, however, may swamp the effect of discounting for intermediate 
lengths of program life.    
The examples in Figure 7 show the counter-intuitive result that comparative costs of the steady-state 
solution and the TEMPO solution are 
inversely related to the discount rate. 
That is, the savings gained by using the 
time-sensitive result are greater the 
lower the discount rate. This result was 
seen program life and MTL value. These 
results suggest that the effect of 
discounting on cyclic replacement of 
inappropriately purchased stocks always 
outweighs the effect of diminished value 
of future achievement of availability or 
other monetized support metrics.   
 The graphs in Figure 8 show a declining 
impact on total life cost of part 
populations exhibiting increasing 
average mean technological life. The 
longer program life and the shorter MTL, 
the bigger the difference between a  
steady state solution and the TEMPO  
solution.   Life  
Note that when MTL exceeds program life, the TEMPO solution is coincident with the steady state 
solution, with the exception of parts that are due in after the first time period. Tempo knows these are 
missing, but steady state models do not. In that case, the steady state assumption holds – if no 
foreseeable changes occur in the conditions modeled such as fleet size, basing, operating pace and 
so on.   

  Figure 7   The Effect of Discount Rates   

  Figure 8  MTL versus Program  



 

 

For more information about all TFD products please 
contact: 

 US: Robert.Nomelli@tfdg.com Tel: +(831) 649-3800 

UK: Fergus.hawkins@tfdg.com Tel: +44 (0) 7425 
801932 

 

 

  
For more information on TEMPO or other TFD products and services please contact:   
    

In North America:   In Europe:      

TFD Global   TFD Europe      

+1 831 649 3800   +44 (0) 1603 726660       

+1 904-637-2020 +44 (0) 1603 746431 (fax)  

      
TFD Global maintains relationships with representatives in many other 
countries. For contact information on representatives, please consult our 
web site under About Us.   

www.tfdg.com   
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